2002 Vol. 4, No. 15 2521–2524

Study of α-Crustacyanin Utilizing Halogenated Canthaxanthins

Jin Liu,*,† Nicole L. Shelton,† and Robert S. H. Liu‡

Department of Chemistry, Murray State University, Murray, Kentucky 42071, and Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822

jin.liu@murraystate.edu

Received May 7, 2002

ABSTRAC1

R = OH; Astaxanthin

R = F, Cl, Br, I; Halogenated canthaxanthins

The preparations and spectroscopic characteristics of five all-trans halogenated canthaxanthins are described in this letter. The air/light-sensitive halogenated canthaxanthins were used to study α -crustacyanin, a blue astaxanthin–protein complex, which is isolated from the carapace of the lobster. Steric and electronegative effects of the halogen substituents on the noncovalent interaction between astaxanthin and the protein in α -crustacyanin were observed.

Bacteriorhodopsin,¹ a retinal—protein complex, plays several important biological roles. In recent years, considerable effort has been concentrated on the understanding of astaxanthin—protein complexes. The well-known astaxanthin—protein complexes, crustacyanins, are isolated from the carapace of the lobster *Homarus gammarus*.²

 α -Crustacyanin and γ -crustacyanin are two isolated crustacyanins that have a deep blue color. UV—vis absorptions of α -crustacyanin and γ -crustacyanin are 632 and 625 nm, respectively. The unusual characteristic of α -crustacyanin and γ -crustacyanin is the large bathochromic shift (α -crustacyanin, 5100 cm $^{-1}$; γ -crustacyanin, 5050 cm $^{-1}$) caused by the noncovalent interaction between astaxanthin and the proteins. 3 Because of a lack of the crystal structures of

all-trans-Retinal

all-trans-Astaxanthin

crustacyanins, some techniques such as solid-state ¹³C NMR,⁴ Stark spectroscopy,⁵ and ¹⁹F NMR⁶ have been used to study the structure of α-crustacyanin to explain its large bathochromic shift. Recombination studies between the colorless

^{*} Corresponding author. Phone: 270-762-6626. Fax: 270-762-6474.

[†] Murray State University.

[‡] University of Hawaii.

⁽¹⁾ Lueke, H.; Schibert, B.; Richter, H. T.; Cartailler, J. P.; Lanyi, J. P. *J. Mol. Biol.* **1999**, *291*, 899–911.

⁽²⁾ Zagalsky, P. F. *Carotenoids 1A: Isolation and Analysis;* Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1995; pp 287–294.

⁽³⁾ Britton, G.; Weesie, R. J.; Askin, D.; Warburton, J. D.; Gallardo-Guerrero, L. Jansen, F. J.; de Groot, H. J. M.; Lugtenburg, J.; Cornard, J.-P.; Merlin, J.-C. *Pure Appl. Chem.* **1997**, *69*, 2075–2084.

⁽⁴⁾ Weesie, R. J.; Askin, D.; Jansen, F. J.; de Groot, H. J. M.; Lugtenburg, J.; Britton, G. *FEBS Lett.* **1995**, *362*, 34–38.

⁽⁵⁾ Krewczyk, S.; Britton, G. Biochim. Biophys. Acta 2001, 1544, 301–310.

⁽⁶⁾ Hoischen, D.; Colmenares, L. U.; Liu, J.; Simmons, C. J.; Britton, G.; Liu, R. S. H. *Bioorg. Chem.* **1998**, *26*, 365–374.

Scheme 1a

^a Reagents and conditions: (a) (CF₃SO₂)₂O, pyridine, CH₂Cl₂, then *n*-Bu₄NF in THF, 49% yield; (b) (CF₃SO₂)₂O, pyridine, CH₂Cl₂, then *n*-Bu₄NCl in THF, 50% yield; (c) *N*,*N*-dimethyl-*N*-1-chloro-2-methylpropenylamine, CH₂Cl₂, 95% yield; (d) (CF₃SO₂)₂O, pyridine, CH₂Cl₂, then NaBr in acetone, 97% yield; (e) (CF₃SO₂)₂O, pyridine, CH₂Cl₂, then NaI in acetone, 98% yield; (f) (i) CH₃COCl, pyridine, CH₂Cl₂, (ii) *N*,*N*-dimethyl-*N*-1-chloro-2-methylpropenylamine, CH₂Cl₂, (iii) NaOCH₃, CH₃OH, 61% yield.

apoprotein of crustacyanin and various carotenoids have revealed that the 4,4'-keto groups are essential for reconstituting the blue carotenoprotein.³ The unique solid-state $^{13}\mathrm{C}$ NMR study of α -crustacyanin reported by Lugtenburg and co-workers supported the idea that the 4,4'-carbonyl groups of astaxanthin played a crucial role in the noncovalent interaction between astaxanthin and the protein. Unfortunately, the resonance signals from the 4,4'- $^{13}\mathrm{C}$ -labeled astaxanthin in the reconstituted α -crustacyanin were weaker than regular $^{13}\mathrm{C}$ resonance signals. 7

Halogenated retinal analogues have been demonstrated to be useful synthetic chromophores in a number of bacteriorhodopsin studies. ^{8–10} In an effort to understand the important role of the 4,4'-carbonyl groups of astaxanthin in crustacyanins, we decided to introduce four different halogen atoms at the 3- and 3'-positions of astaxanthin and to examine the effects of the size and electronegativity of halogen atoms on the noncovalent interactions between astaxanthin and the proteins.

R = OH, Astaxanthin:

R = H, Canthaxanthin;

R = F, 3,3'-Difluorocanthaxanthin;

R = Cl, 3,3'-Dichlorocanthaxanthin;

R = Br, 3,3'-Dibromocanthaxanthin;

R = I, 3,3'-Diiodocanthaxanthin;

R = Cl and OH, 3-Chloro-3'-hydroxycanthaxanthin.

The strategy for introducing halogen substitutes at the 3-and 3'-positions is shown in Scheme 1. The 3- and 3'-hydroxy groups of all-trans astaxanthin were reacted with triflic anhydride and pyridine in CH₂Cl₂ to afford a bistriflate. Upon treatment with 2 equiv of *n*-Bu₄NF in THF, the bis-triflate was converted into 3,3'-difluorocanthaxanthin. Also, 3,3'-dichlorocanthaxanthin, 3,3'-dibromocanthaxanthin, and 3,3'-diiodocanthaxanthin were prepared by treatment of the bis-triflate with 2 equiv of *n*-Bu₄NCl in THF, 3 equiv of NaBr, and 3 equiv of NaI in acetone, respectively. The yields of the bromination and the iodination were almost quantitative. The yields of the chlorination and fluorination were ~50%. The low yields were due to the formation of an elimination product.

To improve the yield of the chlorination, astaxanthin was reacted with *N*,*N*-dimethyl-*N*-1-chloro-2-methylpropenylamine in CH₂Cl₂ at room temperature to give the desired product in a good yield (>95%).¹¹ However, treatment of astaxanthin with *N*,*N*-dimethyl-*N*-1-fluoro-2-methylpropenylamine failed to give 3,3'-difluorocanthaxanthin ascribed to the highly electronegative fluorine atom. The starting material, the elimination product, and other side products were recovered after the reaction. Diethylaminosulfurtrifluoride (DAST) has been proved to be a versatile reagent

2522 Org. Lett., Vol. 4, No. 15, 2002

⁽⁷⁾ Weesie, R. J.; Jansen, F. J. H. M.; Merlin, J. C.; Lugtenburg, J.; Britton, G.; de Groot, H. J. M. *Biochemistry* **1997**, *36*, 7288–7296.

⁽⁸⁾ Crouch, R. K.; Scott, R.; Ghent, S.; Govindjee, R.; Chang, C.-H.; Ebrey, T. *Photochem. Photobiol.* **1986**, *43*, 297–303.

⁽⁹⁾ Tierno, M. E.; Mead, D.; Asato, A. E.; Liu, R. S. H.; Sekiya, N.; Yoshihara, K.; Chang, C.-W.; Nakanishi, K.; Govindjee, R.; Ebrey, T. G. *Biochemistry* **1990**, *29*, 5948–5953.

⁽¹⁰⁾ Colmenares, L. U.; Zhou, X.-L.; Liu, J.; Asato, A. E.; Liu, R. S. H. J. Am. Chem. Soc. 1999, 121, 5803-5804.

⁽¹¹⁾ Munyeman, F.; Frisque-Hesbain, A.-M.; Devos, A.; Ghosez, L. Tetrahedron Lett. 1989, 30, 3077-3080.

Table 1. Partial ¹H NMR Data and UV-vis Absorption Maxima of the Five Halogenated Canthaxanthins

compounds	$H-3,3'^a$	H-7,7′	H-8,8′	H-10,10'	H-11,11'	H-12,12'
astaxanthin	4.31	6.21	6.43	6.30	6.66	6.45
3,3'-diF	5.09	6.19	6.43	6.30	6.65	6.44
3,3'-diCl	4.71	6.18	6.42	6.30	6.65	6.44
3,3'-diBr	4.91	6.18	6.42	6.30	6.65	6.45
3,3′-diI	5.27	6.17	6.41	6.30	6.65	6.45
3-Cl-3'-OH	4.31, 4.71	6.18, 6.21	6.42	6.30	6.65	6.45
compounds	H-14,14′	H-15,15′	5-Me	1,1'-Me,Me	$\lambda_{ ext{max}}{}^{b}$	
astaxanthin	6.30	6.68	1.95	1.21, 1.32	477	
3,3′-diF	6.30	6.65	1.93	1.25, 1.32	477	
3,3'-diCl	6.30	6.65	1.95	1.23, 1.30	477	
3,3′-diBr	6.30	6.65	1.95	1.23, 1.29	477	
0.0/ 1:T	6.30	6.65	1.96	1.20, 1.26	478	
3,3′-diI	0.30	0.00	1.00			

^a In CDCl₃, 200 MHz. ^b Units = nm, in acetone.

in preparation of bioactive molecules with fluorine atoms.¹² Because astaxanthin was decomposed by DAST, it was unsuitable for the preparation of 3,3'-difluorocanthaxanthin.

The first step in the preparation of 3-chloro-3'-hydroxy-canthaxanthin was the protection of one hydroxy group of astaxanthin as an acetoxy group using acetyl chloride and pyridine. Treatment of 3-acetoxy-3'-hydroxycanthaxanthin with *N*,*N*-dimethyl-*N*-1-chloro-2-methylpropenylamine, followed by deprotection with sodium methoxide, gave 3-chloro-3'-hydroxycanthaxanthin in 61% overall yield.

All the analogues obtained as deep red solids are air/light-sensitive. The all-trans isomers of the five halogenated canthaxanthins were isolated by HPLC (YMC Carotenoid Column, 5μ , 60:25:15 CH₃CN/CH₃OH/EtOAc, flow rate = 1 mL/min) in dim red light. The structures of the analogues were confirmed by their ¹H and ¹³C NMR spectra, HR-MS, and UV—vis data and by comparison with those of astaxanthin and canthaxanthin (Table 1). ^{13,14} Because the reconstitution of α -crustacyanin with (3S,3'S)-, (3R,3'R)-, and (3R,3'S)-astaxanthins gave the same reconstituted α -crustacyanin, separation of the stereoisomers of the halogenated canthaxanthins was considered unnecessary for the study of α -crustacyanin. ¹⁵

Reconstitutions of the five halogenated canthaxanthins with the apoprotein isolated from natural $\alpha\text{-}crustacyanin$ were carried out. 6 3,3'-Difluorocanthaxanthin was combined with the apoprotein to give a blue $\alpha\text{-}crustacyanin$ analogue ($\lambda_{max}=600$ nm). The spectra (Figure 1) show that the fluorine atoms at the 3- and 3'-positions cause the blue-shifted UV—vis absorption of the $\alpha\text{-}crustacyanin}$ analogue. It was suggested that hydrogen-bonding interactions between the

carbonyl groups of astaxanthin and hydrogen donors from the protein caused the usual red-shift of the chromophore in α -crustacyanin. The electronegative fluorine atoms at the 3- and 3'-positions should induce weaker hydrogen bonds between the carbonyl groups and hydrogens in the caroteno-protein, thus causing the smaller bathochromic shift of the reconstituted analogue.

Also, 3,3'-dichlorocanthaxanthin, 3,3'-dibromocanthaxanthin, and 3,3'-diiodocanthaxanthin were combined with the apoprotein to form red canthaxanthin—protein complexes ($\lambda_{max} \approx 500$ nm) within 1 min of mixing. The halogenated canthaxanthins were completely dissociated from the protein after 12 h at 4 °C. The results show that if the size of a substituent is larger than that of a fluorine atom, the substituents at the 3,3'-positions of astaxanthin affected the interactions between astaxanthin and the protein. This is probably due to the rigid portion of the protein host around the 3,3'-OH groups of astaxanthin. The protein surrounding for the six-membered rings of astaxanthin in α -crustacyanin

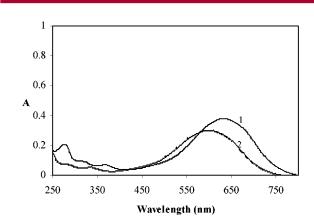
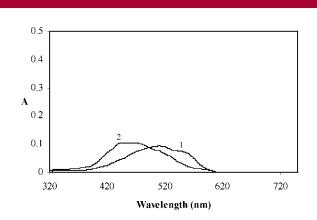


Figure 1. Absorption spectra of α-crustacyanin (1) and the α-crustacyanin analogue reconstituted with 3.3'-difluorocanthaxanthin (2) in 50 mM sodium phosphate buffer.

Org. Lett., Vol. 4, No. 15, 2002

⁽¹²⁾ Chen, S.-H.; Huang, S.; Farina, V. Tetrahedron Lett. 1994, 35, 41–44.


⁽¹³⁾ See, for example, in: *Carotenoids 1B: Spectroscopy*; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1905

⁽¹⁴⁾ Liu, J.; Colmenares, L. U.; Liu, R. S. H. Tetrahedron Lett. **1997**, 38, 8495–8498.

⁽¹⁵⁾ Berger, H.; Rønneberg, H.; Borch, G.; Liaaen-Jensen, S. Comput. Biochem. Physiol. 1982, 71B, 253-258.

seems to be very different from the relatively flexible protein pocket for the six-membered ring of retinal in bacterio-rhodopsin.¹⁶

Moreover, 3-chloro-3'-hydroxycanthaxanthin was reconstituted with the apoprotein to give a similar canthaxanthin—protein complex initially. The synthetic chromophore was released from the protein complex after 12 h (Figure 2) due

Figure 2. Absorption spectra of the 3-chloro-3'-hydroxycantha-xanthin—protein complex (1) in 50 mM sodium phosphate buffer within 1 min of mixing and the dissociated complex (2) in the same buffer after 12 h at 4 °C.

to the steric limitation. However, UV-vis absorption of the 3-chloro-3'-hydroxycanthaxanthin-protein complex (λ_{max} =

510 and 562 nm) was more red-shifted than those of the other red complexes. This was attributed to the hydroxy group of 3-chloro-3'-hydroxycanthaxanthin, which made it possible for a half of the synthetic chromophore to be fitted correctly to the apoprotein. On the basis of our results and the previous reconstitution studies of α -crustacyanin,³ we conclude that the large bathochromic shift of α -crustacyanin can only be achieved when the astaxanthin chromophore snugly fits into the apoprotein of α -crustacyanin.

In this letter, we demonstrate that the air/light-sensitive halogenated canthaxanthin analogues can be prepared from all-trans astaxanthin by convenient methods. These analogues are useful for the study of α -crustacyanin. Recently, we found an ideal method for the reconstitution of γ -crustacyanin. Detailed studies of γ -crustacyanin using these halogenated canthaxanthins and ^{19}F NMR study of the reconstituted crustacyanin analogues are in progress.

Acknowledgment. This work was supported by grants from Kentucky NSF EPSCoR and Howard Hughes Medical Institution.

Supporting Information Available: Experimental procedures for preparations of the five halogenated canthaxanthins and spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026146F

2524 Org. Lett., Vol. 4, No. 15, 2002

⁽¹⁶⁾ Asato, A. E.; Li, X.-Y.; Mead, D.; Patterson, G. M.; Liu, R. S. H. *J. Am. Chem. Soc.* **1990**, *112*, 7398–7399.